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Abstract

We present a study of the growth dynamics and topology
of social network of scientific collaborations in the field of
nanosciences. Two scientists are considered connected if
they have authored a paper together and explicit networks
of such connections are constructed using data from the Sci-
ence Citation Index during a 26-year period (1980 – 2006).
Through empirical analysis we infer the growth and topo-
logical measures that characterize the network as well as
its time evolution. Recently suggested model incorporating
the effects of locality, that is the shortest distance between
nodes, and the attachedness, which is the degree factor, is
applied and found to describe well the empirical relations.

1. Introduction

A social network is a collection of people, each of whom
is acquainted with some subset of the others. Such a net-
work can be represented as a set of nodes (or vertices) de-
noting people, and links (or edges) denoting the fact that
they are acquainted. Social networks can be constructed
for various settings and communities identified by collab-
oration, spread of disease, spread of ideas, or terrorist net-
works, to name a few. In this paper we study as an example
scientific collaboration network in the field of nanosciences.
The choice is justified by the fact that first, the Science Cita-
tion Index provides a reliable database that is extended over
many decades and available in electronic format and sec-
ond, the connectedness in such a social network is precisely
defined through the papers scientists write. The method-
ology outlined in this paper, however, has the potential to
be implemented in studies of military and terrorist relevant
networks as data become available.

In accordance with the results from empirical analy-
sis of scientific collaboration networks in nanosciences we
present model simulation results from the model that incor-
porates both the locality and attachedness factors [1].

2. Observations

Scientific collaborations are best documented through
the papers that scientists write and the Science Citation In-
dex provides an extended electronic database of that. We
focus on the nanoscience field because this is a recently
emerged research field and therefore, we could have the op-
portunity to study the network structure and growth dynam-
ics since the time the network occur.

We acquire the records by inquiring at the Thomson Sci-
entific website [2] directly. Using keyword-based queries
generated based on an iterative relevance feedback tech-
nique [3], we obtain ������ SCI-indexed papers regard-
ing nanosciences. The essential idea of this approach is
to augment the keyword set until the returned results con-
verge. In addition, we extract several sub-communities
from the NanoSCI dataset using keywords such as Nan-
oTube, NanoWire, NanoParticle, Fullerene, etc. These sub-
communities vary from each other in terms of start year,
the number of papers and authors. We consider that the
NanoSCI and each of the sub-communities represent a sci-
entific collaboration network. In each network the nodes
are the scientists and two scientists are connected if they
have coauthored a paper, which is represented as a link.
The number of papers and the number of scientists for the
NanoSCI and for each of the four nanosciences networks as
of year 2006 are listed in Table 1.

3. Data analysis

Next we present the results from empirical analysis
that provide information about the dynamics and structural
mechanisms that govern the growth and topology of these
collaboration networks.
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In order to assess the evolution of both the number of
scientists and the number of papers that they write we plot



Table 1. Number of scientists and number of
papers in different nanoscience communities
as of year 2006

Dataset ���������� ��	�
�

NanoSCI 292393 368511

NanoTube 31688 25285
NanoWire 86234 80645
NanoParticle 81734 69530
Fullerene 97641 96331

the number of papers as a function of the number of sci-
entists. Results for NanoSCI are shown in Fig. 1. These
results indicate that the growth dynamics of the collabora-
tion networks is characterized by power law increase of the
number of papers as the number of scientists in the network
increases. We obtain similar power law increase for each of
the four nanoscience networks as listed in Table 1. Results
for the power law fit of the observational data with a line
in double logarithmic scale is ���� � ���� � 
 ������� for
NanoSCI network and is ���� � 	�� � 
 ������� for Nan-
oTube, where ���� denotes the number of edges (papers)
and 
 ��� denotes the number of vertices (scientists) at time
�.
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Figure 1. Growth rate of the NanSCI network
for the period from 1980 to 2006 expressed
as the number of papers versus the number
of scientists that wrote these papers.

The power law dependence of the growth dynamics indi-
cates that this is a scale-free growth and we can estimate the
rate of growth of the network by taking the derivative of this
power law dependence. By doing that we obtain a quantity

that describes the rate of change of edges versus vertices,
which is called the edge densification rate 
����
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The edge densification rates is 
���� � ���� � 
 �������

for NanoSCI network and
���� � 	����
 ������� for Nan-
oTube network. The edge densification rate of NanoSCI
network is used to compare the simulation results of two
network growth models, which will be discussed in section
4.
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Considering a database that spans over a long period
of time (26 years) allows us to observe the occurrence
and the growth of the scientific collaboration networks in
nanosciences. It is known that there is a possibility of a per-
colation transition in social networks [4]. Usually at the be-
ginning there are small islands of collaborations. As the to-
tal numbers of scientists and the connections between them
increase the islands become more and more connected. A
percolation phase transition is the sharp transition of the
network from a multitude of islands of collaboration to a
situation in which one large component (or cluster), com-
prising a substantial fraction of the scientists, emerges: the
so-called gaint component. Usually in the vicinity but be-
fore the transition, the largest component has an almost lin-
ear or branched structure [5]. In their study of collaboration
networks Guimera et al. [5] find that as the network grows
the largest component starts to have more and more loops,
and eventually, it becomes a densely connected network.

As it is done typically in the study of percolation phase
transition [4], we use the fraction of scientists that belong to
the largest component of the network to quantify the tran-
sition between two regimes: one is an invisible college —
that is the web of connections linking the scientists across
universities, and the other regime is the network of isolated
schools. In Fig. 2 we present the evolution of the size of
the largest component which is the number of scientists that
belong to the largest component divided by the total number
of scientists in the network at certain time, for three of the
nanoscience networks, the NanoSCI, the NanoTube, and the
NanoWire.

We find that the size of the largest component for these
networks increases and at the end of 2006 it reaches 87% for
NanoSCI, 81% for NanoTube, and 70% for NanoWire. It is
known that a percolation phase transition occurs at around
50–60% depending on the structure of the system [4]. The
results shown in Fig. 2 indicate that the scientific collabo-
ration networks in nanosciences expand over the years and
the NanoSCI experienced the percolation transition around
1998, the NanoTube and NanoWire went through the perco-
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Figure 2. The evolution of the size of the
giant component for the NanoSCI (circles),
NanoTube (triangles) and NanoWire (diamonds)
networks.

lation transition around 2000, and 2004, respectively. The
latter two networks occur much later in the structure of the
nanoscience network but expand much more rapidly.

We intend to explore further the growth dynamics of the
giant component and to obtain more specific means of quan-
tifying the percolation transition.
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The social networks have another important property.
Real social networks are clustered, meaning they possess
local communities in which a higher than average number
of people know one another. One way of testing for such
clustering in a network is to measure the fraction of triples
in a network, also called clustering coefficient �, which for
a collaboration graph is the average fraction of pairs of a
person’s collaborators who have also collaborated with one
another. We find that the values of the clustering coefficient
for NanoSCI, NanoTube, and NanoWire are 0.82, 0.81, and
0.87, respectively. These high values of the clustering co-
efficient are suggestive of a structure of the networks that
contain highly dense and internally connected hubs that are
sparsely connected between each other. These findings are
in accordance with the evolution of the giant component
that we discussed in previous subsection.
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As the network evolves the distance between nodes
changes. To quantify the distance 
����� ��� between any
two nodes �� and �� at time � we consider the average short-

est distance 
��� defined as
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 ����
 ���� ��
� (2)

where 
 ��� denotes the set of vertices at time �.
Results for the average shortest distance inside the giant

component are shown in Fig. 3 for NanoSCI, NanoTube,
and NanoWire networks. Note that the average shortest dis-
tance reaches a maximum and then decreases with time for
the entire NanoSCI network, as well as for each of the two
sub-community networks. This is know as the “shrinking
diameter” phenomenon [7].
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Figure 3. Average shortest distance as a
function of time within the giant component
for for NanoSCI, NanoTube, and NanoWire net-
works.
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In a network a randomly selected node is connected to �

other nodes through � links (edges) with probability � ���
which is called vertex connectivity or degree distribution.
We obtain the probability � ��� for each of the nanoscience
networks. The results for NanoSCI and NanoTube calcu-
lated in equidistant in logarithmic scale bins are plotted
in Fig. 4. Triangles mark the degree distribution of all
nodes that exist in the NanoSCI network from its inception
through the end of 2005. Crosses mark the degree distribu-
tion of all nodes that exist in the NanoTube network from its
inception through the end of 2005. The tails of both of these
distributions exhibit a behavior that is close to a power law.
Networks that show such power law distribution are know
as scale-free networks [6].
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Figure 4. Degree distributions of the NanoSCI
and NanoTube networks for all nodes through
the end of 2005 (triangles and crosses, re-
spectively) and for nodes that occur in 2006
only (inverted triangles and asterick, respec-
tively). Each set of symbols is fitted with a
power law with exponential cut-off. See the
text for discussion and consult Table 2 for the
values of the parameters of the fit.

There has been a significant discussion about the degree
distribution of various networks in the literature. Barabasi
and Albert [6, 7] have suggested that power law distribution
may apply to most of the networks of interest including so-
cial networks. They report that scientific collaboration net-
works in mathematics and neuroscience scale with power
law exponent of 2.4 and 2.1, respectively. We find similar
values of the power law exponent for nanoscience networks
(see Table 2). Amaral et al., [8] present a variety of evi-
dence for existence of different classes of networks. New-
man [9] report on the structure of scientific collaboration
networks and find that collaboration networks in condensed
matter physics, astrophysics, high-energy physics and com-
puter science, all can be best fit with a power law form with
exponential cut-off.

Similarly to [9] we find that the degree distribution of the
networks in nanosciences are best fit with a power law form
with exponential cut-off

� ��� � ��������� � (3)

where � and �� are constant whose values are listed in Table
2.

In order to quantify the growth dynamics of the network
we compare the degree distribution of the nodes that occur
in year 2006 only. These are scientists that join the net-
work during 2006. Their degree distribution is marked by

Table 2. Summary of results of the analysis.
The 	-values of the fit for all coefficients are
less than 0.0001

Dataset � �� ��

NanoSCI
Total in 2005 2.21 250 0.99
New in 2006 1.77 166.7 0.98
NanoTube

Total in 2005 1.94 108.7 1.0
New in 2006 1.41 87.7 0.99

inverted triangles for the NanSCI network and by asterisks
for the NanoTube network. Again they are best fit with a
power law form with exponential cut-off (3) and the val-
ues of � and �� are listed in Table 2. The lower values of
the power law constant � for the degree distribution of new
nodes that occur in 2006 for both NanSCI and NanoTube
networks indicate that these networks form new links with
probability that is higher than the probability of an exist-
ing node to have certain number of degrees. This is a very
specific result and is used to define one of the major char-
acteristics of the model presented in section 4. The fact that
the networks form new links with probability higher than
the probability of the existing nodes is an indicator for the
attachedness of the network.
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Topological proximity is another factor that influence the
ability of the nodes to attract new links. To assess this we
calculate the distribution of the distance between two nodes
for each of the networks. The result for the NanoSCI net-
work is shown in Fig. 5. Again we are interested in the
evolution of the distribution. To estimate such an evolution
we obtain the distance distribution for the network through
the end of year 2005 and plot the result with circles in Fig.
5. The distance distribution for the nodes (scientists) and
links (papers) that occur in year 2006 only is plotted in the
same figure with asterisks. These results clearly indicate
that the network forms new links with probability inversely
proportional to the distance. They are as well a criterion for
the locality factor which will be discussed in section 4.

4. Model

Several relationships are derived from the empirical
analysis presented so far. We obtain that the scientific col-
laboration networks in nanosciences are characterized by
scale-free growth dynamics that allow us to define the edge
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Figure 5. Distance distribution of the NanoSCI
network. Circles denote the distance distri-
bution of the network by the end of 2005. As-
terisks denote the distribution of direct col-
laborations added in 2006.

densification rate which is in essence the growth rate of the
network. Second, we show that the networks form new
links with probability that is proportional to the degree and
inversely proportional to the distance. These findings sat-
isfy the basic rules of the recently suggested locality and
attachedness based model [1].

Let us briefly describe the distance (locality) and degree
(attachedness) based model, called the DDG model [1]. The
proximity between two individual nodes can be measured
by a variety of measures. We use shortest distance to mea-
sure the proximity between two nodes. In the growth pro-
cess, a new vertex and � edges (� � 
����) are added to the
graph at each time step. The DDG model specifies that the
two vertices of a new edge are determined in the following
way: (1) one node �	 is selected uniformly from the graph
as the start vertex of the new edge; (2) the probability that a
node �
 is selected as the end node of the new edge is

	���
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�
�
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�
�

�
��������
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where
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� if 
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� �	� ��

���
� �	� otherwise�

(5)

and ����
� is defined by

�
�

����� � ������ 
 � (6)

where 
���
� �	� is the shortest distance between nodes �

and �	 and ������ is the degree of node �� at time �.

Equation 5 specifies that if two nodes are disconnected,
the distance between them is a large number �. This way,
the probability of building a new connection between any
two nodes is non-zero.

Simulation results for the average shortest distance pro-
duced with the DDG model are shown in Fig. 6. Note the
maximum in the DDG curve. We compare this result with
simulation output from another model. This is the param-
eterized preferential attachment model PPAM [7] in which
the probability that a node is selected as the end node � � of
the new edge is

	����� �
�

�

������

 �

�

���
�
(7)

where ������� is defined as in (6).
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Figure 6. Model results for average shortest
distance as a function of time for edge densi-
fication rate ���� � ���� � 
 ������� using DDG
(squares) and PPAM (circles) models.

Simulation results from the preferential attachment
model calculated with the same diversification rate are plot-
ted with circles in Fig. 6 and show an increase and a ten-
dency to saturate, but do not demonstrate a maximum in the
evolution of the average shortest distance as do the DDG
model results.

5. Conclusions and future work

We present a study of the growth dynamics and struc-
ture of scientific collaboration network which can serve as
a prototype of a complex evolving network with wide ap-
plications, including military ad hoc communication net-
work and terrorist networks. The empirical analysis of real-
world data provided the main characteristics and relation-



ships that describe a specific network. We find that collabo-
ration networks in nanosciences are characterized by scale-
free growth dynamics that allow us to define edge densifica-
tion rate. Typical for these networks are the quickly increas-
ing giant component and high clustering, which are indica-
tive of a structure of dense hubs sparsely connected between
each other known as assortive networks [10]. Next we test
the vertex connectivity by assessing the degree distribution
and find a power law dependence (with exponential cut-off)
which is a characteristic of scale free networks. The ex-
ponential cut-off is more pronounced for the distribution of
links that occur in 2006, and therefore might be caused by
the finite time window. Furthermore, we present model sim-
ulation results that show the “shrinking diameter” feature of
the real data.

We intend to focus on a detailed study of the evolution
of the giant component and especially to quantify the per-
colation phase transition as this is of paramount importance
for investigating the growth dynamics of social networks.
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