
Self-Stabilizing A lgorithm s

An Introduction

Wayne Goddard

School of Computing, Clemson University

talkIntro: 1



Computer Science

what problems can be solved with what resources?

talkIntro: 2



A Leader Selection Problem

Have lecture room:

• each person can only see their neighbors

• each person can only communicate with their

neighbors

Want to agree on a leader

talkIntro: 3



Leader Selection A lgorithm?

Goal: determine person of highest rank

each turn, poll all neighbors and

update knowledge of highest-rank that know of

•works if start with blank slate and common

clock

• but stale information is a problem. . .

• can be solved using info about how “far” you

are from highest rank you believe you know,

but complex

talkIntro: 4



Computer Science Again

To determine what problems can be solved with

what resources, we need:

• good algorithms for problems

• proofs that one can do no better

We (humanity) are getting good at the first part,

but somehow the second part is still an enigma.

talkIntro: 5



A Theoretician’s Apology

G.H. Hardy and theorems about prime number

talkIntro: 6



Definition of Self-Stabilization

A distributed algorithm is an algorithm for a

network of nodes where each node can see and

communicate with only their neighbors.

A self-stabilizing algorithm additionally has

no coordination, nor initialization: rather, from

any initial state it can achieve its goal.

talkIntro: 7



Why Self-Stabilization

At the fringes of network algorithms. Questions

about practicality of implementation. But have

the advantage of

• autonomous

• handle arbitrarily many faults

• no infrastructure

• low power

talkIntro: 8



And Netw ork Science?

“Global phenomena emerging from local rules”

talkIntro: 9



This Talk

Aim to show a simple example of an algorithm

and a simple example of a proof of impossibility.

talkIntro: 10



Set w ithout N eighbors

Suppose you want to choose large subset of the

nodes so that neighborhoods are disjoint (e.g. to

avoid radio interference). Take simpler problem

of:

choosing large subset so that no two neigh-

bors are in the set

Called an independent set

talkIntro: 11



Algorithm

Algorithm for S:

1) If not in S and no neighbor in S, enter S.

2) If in S and some neighbor in S, exit S.

If algorithm terminates, then we have valid in-

dependent set. (And it cannot be extended.)

But does it terminate?

talkIntro: 12



Term ination of A lgorithm

1) No, not guaranteed if nodes move synchronously.

For, can oscillate all in, all out.

2) Yes, guaranteed if only one node moves at

a time. For, a node that enters locks out its

neighbors. And so never exits.

Note, that algorithm works even if all nodes are

identical.

talkIntro: 13



Impossibility of Leader Selection

Consider network of 4 identical nodes arranged

in a cycle. Want to choose leader. (Letters are

only for reference.)

a

b

c

d

Malicious adversary starts all nodes in same state.

Ensures that whenever a moves, c moves imme-

diately and vice versa. Similarly ensures b and

d move together.

talkIntro: 14



Consequence

The adversary can maintain mirror symmetry.

But we need to break symmetry to choose leader.

So cannot do leader selection with identical nodes.

So we need ranks or something like that.

talkIntro: 15



Self-Stabilizing A lgorithm s Today

Aim to solve, and to some extent have solved,

the standard problems of distributed systems

(leader election, partitioning, clock synchroniza-

tion, data aggregation, . . . )

Implementation? Seem ideal for sensor networks.

But tools applicable to other network problems.

talkIntro: 16



The End

Or just the beginning?

talkIntro: 17


